Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011280, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271464

RESUMO

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the inflammatory cascade is necessary to understand this pathogen's virulence. While previous studies have established that Y. pestis actively inhibits the expression of host proteins that mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid mediator response during plague. Here we used the murine model to define the kinetics of the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and immune cell activator, within the lungs during pneumonic plague. Furthermore, we demonstrated that exogenous administration of LTB4 prior to infection limited bacterial proliferation, suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis immune evasion. Using primary leukocytes from mice and humans further revealed that Y. pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type 3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop effectors secreted through the T3SS effectively inhibit this host response. Together, these data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4 contributing to the delay in the inflammatory cascade required for rapid recruitment of leukocytes to sites of infection.


Assuntos
Peste , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/metabolismo , Peste/microbiologia , Sistemas de Secreção Tipo III/metabolismo , Leucotrieno B4/metabolismo , Leucócitos/metabolismo , Inflamação , Proteínas de Bactérias/metabolismo
2.
mBio ; 14(3): e0065823, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042761

RESUMO

Pathogenic microbial ecosystems are often polymicrobial, and interbacterial interactions drive emergent properties of these communities. In the oral cavity, Streptococcus gordonii is a foundational species in the development of plaque biofilms, which can contribute to periodontal disease and, after gaining access to the bloodstream, target remote sites such as heart valves. Here, we used a transposon sequencing (Tn-Seq) library of S. gordonii to identify genes that influence fitness in a murine abscess model, both as a monoinfection and as a coinfection with an oral partner species, Porphyromonas gingivalis. In the context of a monoinfection, conditionally essential genes were widely distributed among functional pathways. Coinfection with P. gingivalis almost completely changed the nature of in vivo gene essentiality. Community-dependent essential (CoDE) genes under the coinfection condition were primarily related to DNA replication, transcription, and translation, indicating that robust growth and replication are required to survive with P. gingivalis in vivo. Interestingly, a group of genes in an operon encoding streptococcal receptor polysaccharide (RPS) were associated with decreased fitness of S. gordonii in a coinfection with P. gingivalis. Individual deletion of two of these genes (SGO_2020 and SGO_2024) resulted in the loss of RPS production by S. gordonii and increased susceptibility to killing by neutrophils. P. gingivalis protected the RPS mutants by inhibiting neutrophil recruitment, degranulation, and neutrophil extracellular trap (NET) formation. These results provide insight into genes and functions that are important for S. gordonii survival in vivo and the nature of polymicrobial synergy with P. gingivalis. Furthermore, we show that RPS-mediated immune protection in S. gordonii is dispensable and detrimental in the presence of a synergistic partner species that can interfere with neutrophil killing mechanisms. IMPORTANCE Bacteria responsible for diseases originating at oral mucosal membranes assemble into polymicrobial communities. However, we know little regarding the fitness determinants of the organisms that initiate community formation. Here, we show that the extracellular polysaccharide of Streptococcus gordonii, while important for streptococcal survival as a monoinfection, is detrimental to survival in the context of a coinfection with Porphyromonas gingivalis. We found that the presence of P. gingivalis compensates for immune protective functions of extracellular polysaccharide, rendering production unnecessary. The results show that fitness determinants of bacteria in communities differ substantially from those of individual species in isolation. Furthermore, constituents of communities can undertake activities that relieve the burden of energetically costly biosynthetic reactions on partner species.


Assuntos
Coinfecção , Streptococcus gordonii , Animais , Camundongos , Streptococcus gordonii/genética , Coinfecção/microbiologia , Ecossistema , Biofilmes , Boca
3.
Infect Immun ; 91(2): e0031922, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36648232

RESUMO

Increased prevalence and abundance of Selenomonas sputigena have been associated with periodontitis, a chronic inflammatory disease of tooth-supporting tissues, for more than 50 years. Over the past decade, molecular surveys of periodontal disease using 16S and shotgun metagenomic sequencing approaches have confirmed the disease association of classically recognized periodontal pathogens such as Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia while highlighting previously underappreciated organisms such as Filifactor alocis and S. sputigena. Despite abundant clinical association between S. sputigena and periodontal disease, we have little to no understanding of its pathogenic potential, and virulence mechanisms have not been studied. In this study, we sought to characterize the response of gingival epithelial cells to infection with S. sputigena. Here, we show that S. sputigena attaches to gingival keratinocytes and induces expression and secretion of cytokines and chemokines associated with inflammation and leukocyte recruitment. We demonstrate that S. sputigena induces signaling through Toll-like receptor 2 (TLR2) and TLR4 but evades activation of TLR5. Cytokines released from S. sputigena-infected keratinocytes induced monocyte and neutrophil chemotaxis. These results show that S. sputigena-host interactions have the potential to contribute to bacterially driven inflammation and tissue destruction, the hallmark of periodontitis. Characterization of previously unstudied pathogens may provide novel approaches to develop therapeutics to treat or prevent periodontal disease.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Inflamação , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo
4.
J Clin Periodontol ; 50(1): 121-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122937

RESUMO

AIM: Filifactor alocis has recently emerged as a periodontal pathobiont that appears to thrive in the oral cavity of smokers. We hypothesized that identification of smoke-responsive F. alocis genes would provide insight into adaptive strategies and that cigarette smoke would enhance F. alocis pathogenesis in vivo. MATERIALS AND METHODS: F. alocis was grown in vitro and cigarette smoke extract-responsive genes determined by RNAseq. Mice were exposed, or not, to mainstream 1R6F research cigarette smoke and infected with F. alocis, or not, in an acute ligature model of periodontitis. Key clinical, infectious, and immune data were collected. RESULTS: In culture, F. alocis growth was unaffected by smoke conditioning and only a small number of genes were specifically regulated by smoke exposure. Reduced murine mass, differences in F. alocis-cognizant antibody production, and altered immune profiles as well as altered alveolar bone loss were all attributable to smoke exposure and/or F. alocis infection in vivo. CONCLUSIONS: F. alocis is well-adapted to tobacco-rich conditions and its pathogenesis is enhanced by tobacco smoke exposure. A smoke-exposed ligature model of periodontitis shows promise as a tool with which to further unravel mechanisms underlying tobacco-enhanced, bacteria-induced disease.


Assuntos
Periodontite , Poluição por Fumaça de Tabaco , Camundongos , Animais , Virulência , Clostridiales , Periodontite/etiologia
5.
Immunol Rev ; 314(1): 93-110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36271881

RESUMO

Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.


Assuntos
Neutrófilos , Periodontite , Humanos , Inflamação , Periodonto , Homeostase
6.
Front Oral Health ; 3: 981343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046121

RESUMO

Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.

7.
Front Immunol ; 13: 879686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711435

RESUMO

Neutrophils play a significant role in determining disease severity following SARS-CoV-2 infection. Gene and protein expression defines several neutrophil clusters in COVID-19, including the emergence of low density neutrophils (LDN) that are associated with severe disease. The functional capabilities of these neutrophil clusters and correlation with gene and protein expression are unknown. To define host defense and immunosuppressive functions of normal density neutrophils (NDN) and LDN from COVID-19 patients, we recruited 64 patients with severe COVID-19 and 26 healthy donors (HD). Phagocytosis, respiratory burst activity, degranulation, neutrophil extracellular trap (NET) formation, and T-cell suppression in those neutrophil subsets were measured. NDN from severe/critical COVID-19 patients showed evidence of priming with enhanced phagocytosis, respiratory burst activity, and degranulation of secretory vesicles and gelatinase and specific granules, while NET formation was similar to HD NDN. COVID LDN response was impaired except for enhanced NET formation. A subset of COVID LDN with intermediate CD16 expression (CD16Int LDN) promoted T cell proliferation to a level similar to HD NDN, while COVID NDN and the CD16Hi LDN failed to stimulate T-cell activation. All 3 COVID-19 neutrophil populations suppressed stimulation of IFN-γ production, compared to HD NDN. We conclude that NDN and LDN from COVID-19 patients possess complementary functional capabilities that may act cooperatively to determine disease severity. We predict that global neutrophil responses that induce COVID-19 ARDS will vary depending on the proportion of neutrophil subsets.


Assuntos
COVID-19 , Armadilhas Extracelulares , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo , Explosão Respiratória , SARS-CoV-2
8.
Mol Microbiol ; 117(6): 1340-1351, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437843

RESUMO

Periodontitis is a chronic inflammatory infectious disease that affects the integrity of tooth-supporting tissues and has adverse systemic consequences. Advances in sequencing technologies have uncovered organisms that are exclusively found in high numbers in periodontal lesions, such as the gram-positive anaerobic rod, Filifactor alocis. F. alocis can manipulate neutrophil effector functions, which allows the organism to survive within these granulocytes. Several neutrophil functions have been tested in the context of F. alocis challenge, but the effect of the organism on neutrophil apoptosis is still unknown. RNA sequencing of human neutrophils challenged with F. alocis showed that apoptosis pathways were differentially regulated. Compared to media-cultured controls, F. alocis-challenged neutrophils maintain their nuclear morphology, do not stain for Annexin V or 7-AAD, and have decreased DNA fragmentation. Inhibition of apoptosis by F. alocis involved reduced caspase-3, -8, and - 9 activation and upregulation of important anti-apoptotic proteins. Prolonged lifespan was dependent on contact through TLR2/6, and F. alocis-challenged neutrophils retained their functional capacity to induce inflammation for longer timepoints. This is the first in-depth characterization of neutrophil apoptotic programs in response to an oral pathogen and provides key information on how bacteria manipulate immune cell mechanisms to maintain a dysregulated inflammatory response.


Assuntos
Neutrófilos , Periodontite , Clostridiales , Humanos , Longevidade , Neutrófilos/microbiologia , Periodontite/microbiologia
9.
Front Immunol ; 12: 707096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456916

RESUMO

Aggregatibacter actinomycetemcomitans is a gram-negative facultative anaerobe and an opportunistic oral pathogen, strongly associated with periodontitis and other inflammatory diseases. Periodontitis is a chronic inflammation of the periodontium resulting from the inflammatory response of the host towards the dysbiotic microbial community present at the gingival crevice. Previously, our group identified catecholamines and iron as the signals that activate the QseBC two-component system in A. actinomycetemcomitans, necessary for the organism to acquire iron as a nutrient to survive in the anaerobic environment. However, the source of catecholamines has not been identified. It has been reported that mouse neutrophils can release catecholamines. In periodontitis, large infiltration of neutrophils is found at the subgingival pocket; hence, we wanted to test the hypothesis that A. actinomycetemcomitans exploits human neutrophils as a source for catecholamines. In the present study, we showed that human neutrophils synthesize, store, and release epinephrine, one of the three main types of catecholamines. Human neutrophil challenge with A. actinomycetemcomitans induced exocytosis of neutrophil granule subtypes: secretory vesicles, specific granules, gelatinase granules, and azurophilic granules. In addition, by selectively inhibiting granule exocytosis, we present the first evidence that epinephrine is stored in azurophilic granules. Using QseC mutants, we showed that the periplasmic domain of the QseC sensor kinase is required for the interaction between A. actinomycetemcomitans and epinephrine. Finally, epinephrine-containing supernatants collected from human neutrophils promoted A. actinomycetemcomitans growth and induced the expression of the qseBC operon under anaerobic conditions. Based on our findings, we propose that A. actinomycetemcomitans promotes azurophilic granule exocytosis by neutrophils as an epinephrine source to promote bacterial survival.


Assuntos
Aggregatibacter actinomycetemcomitans/metabolismo , Epinefrina/metabolismo , Neutrófilos/metabolismo , Infecções por Pasteurellaceae/metabolismo , Periodontite/microbiologia , Sobrevivência Celular/fisiologia , Humanos
10.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986193

RESUMO

SARS coronavirus 2 (SARS-CoV-2) is a novel viral pathogen that causes a clinical disease called coronavirus disease 2019 (COVID-19). Although most COVID-19 cases are asymptomatic or involve mild upper respiratory tract symptoms, a significant number of patients develop severe or critical disease. Patients with severe COVID-19 commonly present with viral pneumonia that may progress to life-threatening acute respiratory distress syndrome (ARDS). Patients with COVID-19 are also predisposed to venous and arterial thromboses that are associated with a poorer prognosis. The present study identified the emergence of a low-density inflammatory neutrophil (LDN) population expressing intermediate levels of CD16 (CD16Int) in patients with COVID-19. These cells demonstrated proinflammatory gene signatures, activated platelets, spontaneously formed neutrophil extracellular traps, and enhanced phagocytic capacity and cytokine production. Strikingly, CD16Int neutrophils were also the major immune cells within the bronchoalveolar lavage fluid, exhibiting increased CXCR3 but loss of CD44 and CD38 expression. The percentage of circulating CD16Int LDNs was associated with D-dimer, ferritin, and systemic IL-6 and TNF-α levels and changed over time with altered disease status. Our data suggest that the CD16Int LDN subset contributes to COVID-19-associated coagulopathy, systemic inflammation, and ARDS. The frequency of that LDN subset in the circulation could serve as an adjunct clinical marker to monitor disease status and progression.


Assuntos
Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/etiologia , COVID-19/sangue , COVID-19/complicações , Neutrófilos/imunologia , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/imunologia , COVID-19/imunologia , Citocinas/sangue , Feminino , Proteínas Ligadas por GPI/sangue , Hospitalização , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Neutrófilos/classificação , Pandemias , Fagocitose , Ativação Plaquetária , Receptores de IgG/sangue , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Índice de Gravidade de Doença
11.
Mol Oral Microbiol ; 36(2): 103-120, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128827

RESUMO

Periodontitis is an irreversible, chronic inflammatory disease where inflammophilic pathogenic microbial communities accumulate in the gingival crevice. Neutrophils are a major component of the innate host response against bacterial challenge, and under homeostatic conditions, their microbicidal functions typically protect the host against periodontitis. However, a number of periodontal pathogens developed survival strategies to evade neutrophil microbicidal functions while promoting inflammation, which provides a source of nutrients for bacterial growth. Research on periodontal pathogens has largely focused on a few established species: Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. However, advances in culture-independent techniques have facilitated the identification of new bacterial species in periodontal lesions, such as the two Gram-positive anaerobes, Filifactor alocis and Peptoanaerobacter stomatis, whose characterization of pathogenic potential has not been fully described. Additionally, there is not a full understanding of the pathogenic mechanisms used against neutrophils by organisms that are abundant in periodontal lesions. This presents a substantial barrier to the development of new approaches to prevent or ameliorate the disease. In this review, we first summarize the neutrophil functions affected by the established periodontal pathogens listed above, denoting unknown areas that still merit a closer look. Then, we review the literature on neutrophil functions and the emerging periodontal pathogens, F. alocis and P. stomatis, comparing the effects of the emerging microbes to that of established pathogens, and speculate on the contribution of these putative pathogens to the progression of periodontal disease.


Assuntos
Clostridiales , Neutrófilos , Aggregatibacter actinomycetemcomitans , Humanos , Inflamação , Porphyromonas gingivalis , Treponema denticola
12.
Front Immunol ; 11: 497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373107

RESUMO

Periodontitis is an irreversible, bacteria-induced, chronic inflammatory disease that compromises the integrity of tooth-supporting tissues and adversely affects systemic health. As the immune system's first line of defense against bacteria, neutrophils use their microbicidal functions in the oral cavity to protect the host against periodontal disease. However, periodontal pathogens have adapted to resist neutrophil microbicidal mechanisms while still propagating inflammation, which provides essential nutrients for the bacteria to proliferate and cause disease. Advances in sequencing technologies have recognized several newly appreciated bacteria associated with periodontal lesions such as the Gram-positive anaerobic rod, Filifactor alocis. With the discovery of these oral bacterial species, there is also a growing need to assess their pathogenic potential and determine their contribution to disease progression. Currently, few studies have addressed the pathogenic mechanisms used by oral bacteria to manipulate the neutrophil functional responses at the level of the transcriptome. Thus, this study aims to characterize the global changes at the gene expression level in human neutrophils during infection with F. alocis. Our results indicate that the challenge of human neutrophils with F. alocis results in the differential expression of genes involved in multiple neutrophil effector functions such as chemotaxis, cytokine and chemokine signaling pathways, and apoptosis. Moreover, F. alocis challenges affected the expression of components from the TNF and MAPK kinase signaling pathways. This resulted in transient, dampened p38 MAPK activation by secondary stimuli TNFα but not by fMLF. Functionally, the F. alocis-mediated inhibition of p38 activation by TNFα resulted in decreased cytokine production but had no effect on the priming of the respiratory burst response or the delay of apoptosis by TNFα. Since the modulatory effect was characteristic of viable F. alocis only, we propose this as one of F. alocis' mechanisms to control neutrophils and their functional responses.


Assuntos
Clostridiales/imunologia , Neutrófilos/fisiologia , Periodontite/imunologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Explosão Respiratória , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
FASEB J ; 34(7): 9120-9140, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32433819

RESUMO

Homeostasis between pro- and anti- inflammatory responses induced by bacteria is critical for the maintenance of health. In the oral cavity, pro-inflammatory mechanisms induced by pathogenic bacteria are well-established; however, the anti-inflammatory responses that act to restrain innate responses remain poorly characterized. Here, we demonstrate that infection with the periodontal pathogen Porphyromonas gingivalis enhances the activity of Janus kinase 3 (JAK3) in innate immune cells, and subsequently phospho-inactivates Nedd4-2, an ubiquitin E3 ligase. In turn, Wingless-INT (Wnt) 3 (Wnt3) ubiquitination is decreased, while total protein levels are enhanced, leading to a reduction in pro-inflammatory cytokine levels. In contrast, JAK3 or Wnt3a inhibition robustly enhances nuclear factor kappa-light-chain-enhancer of activated B cells activity and the production of pro-inflammatory cytokines in P. gingivalis-stimulated innate immune cells. Moreover, using gain- and loss-of-function approaches, we demonstrate that downstream molecules of Wnt3a signaling, including Dvl3 and ß-catenin, are responsible for the negative regulatory role of Wnt3a. In addition, using an in vivo P. gingivalis-mediated periodontal disease model, we show that JAK3 inhibition enhances infiltration of inflammatory cells, reduces expression of Wnt3a and Dvl3 in P. gingivalis-infected gingival tissues, and increases disease severity. Together, our results reveal a new anti-inflammatory role for JAK3 in innate immune cells and show that the underlying signaling pathway involves Nedd4-2-mediated Wnt3a ubiquitination.


Assuntos
Infecções por Bacteroidaceae/complicações , Reabsorção Óssea/prevenção & controle , Inflamação/prevenção & controle , Janus Quinase 3/metabolismo , Doenças Periodontais/prevenção & controle , Substâncias Protetoras , Proteína Wnt3A/metabolismo , Animais , Infecções por Bacteroidaceae/microbiologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 3/genética , Camundongos , Camundongos Endogâmicos C57BL , Doenças Periodontais/etiologia , Doenças Periodontais/metabolismo , Doenças Periodontais/patologia , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais , Proteína Wnt3A/genética
14.
Pathogens ; 9(2)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075233

RESUMO

Mycobacterium smegmatis rarely causes disease in the immunocompetent, but reported cases of soft tissue infection describe abscess formation requiring surgical debridement for resolution. Neutrophils are the first innate immune cells to accumulate at sites of bacterial infection, where reactive oxygen species and proteolytic enzymes are used to kill microbial invaders. As these phagocytic cells play central roles in protection from most bacteria, we assessed human neutrophil phagocytosis and granule exocytosis in response to serum opsonized or non-opsonized M. smegmatis mc2. Although phagocytosis was enhanced by serum opsonization, M. smegmatis did not induce exocytosis of secretory vesicles or azurophilic granules at any time point tested, with or without serum opsonization. At early time points, opsonized M. smegmatis induced significant gelatinase granule exocytosis compared to non-opsonized bacteria. Differences in granule release between opsonized and non-opsonized M. smegmatis decreased in magnitude over the time course examined, with bacteria also evoking specific granule exocytosis by six hours after addition to cultured primary single-donor human neutrophils. Supernatants from neutrophils challenged with opsonized M. smegmatis were able to digest gelatin, suggesting that complement and gelatinase granule exocytosis can contribute to neutrophil-mediated tissue damage seen in these rare soft tissue infections.

15.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31871100

RESUMO

Yersinia pestis causes a rapid, lethal disease referred to as plague. Y. pestis actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of Y. pestis to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS). While each Yop effector interacts with specific host proteins to inhibit their function, several Yop effectors either target the same host protein or inhibit converging signaling pathways, leading to functional redundancy. Previous work established that Y. pestis uses the T3SS to inhibit neutrophil respiratory burst, phagocytosis, and release of inflammatory cytokines. Here, we show that Y. pestis also inhibits release of granules in a T3SS-dependent manner. Moreover, using a gain-of-function approach, we discovered previously hidden contributions of YpkA and YopJ to inhibition and that cooperative actions by multiple Yop effectors are required to effectively inhibit degranulation. Independent from degranulation, we also show that multiple Yop effectors can inhibit synthesis of leukotriene B4 (LTB4), a potent lipid mediator released by neutrophils early during infection to promote inflammation. Together, inhibition of these two arms of the neutrophil response likely contributes to the noninflammatory environment needed for Y. pestis colonization and proliferation.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Neutrófilos/fisiologia , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidade , Proteínas de Bactérias/genética , Degranulação Celular , Mutação com Ganho de Função , Humanos , Leucotrieno B4/metabolismo , Neutrófilos/metabolismo , Peste/imunologia , Vesículas Secretórias/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/genética , Yersinia pestis/genética , Yersinia pestis/metabolismo
16.
Mol Immunol ; 118: 153-164, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31884387

RESUMO

BACKGROUND: Accumulating evidence suggests a regulatory role of Wnt proteins in innate immune responses. However, the effects of Wnt3a signaling on TLR4-mediated inflammatory responses are controversial and the signaling crosstalk between TLR4 and Wnt3a remains uncertain. METHODS: Gain- and Loss- of function approaches were utilized to determine the function of Wnt3a signaling in TLR4-mediated inflammatory responses. Cytokine production at protein and mRNA levels and phosphorylation of signaling molecules were measured by ELISA, qRT-PCR, and Western Blot, respectively. Endotoxemia mouse model was employed to assess the effect of Wnt3a on systemic inflammatory cytokine levels and neutrophil infiltration. RESULTS: LPS stimulation leads to an increase of Wnt3a expression and its downstream molecule, Dvl3, in primary monocytes. Inhibition or silence of Wnt3a or Dvl3 significantly increases the production of pro-inflammatory cytokines (IL-12, IL-6, TNFα), robustly reduces ß-catenin accumulation, and enhances the phosphorylation of NF-κB P65 and its DNA binding activity. These results were confirmed by multiple gain- and loss- of function approaches including specific siRNA and ectopic expression of Dvl3, GSK3ß, and ß-catenin in monocytes. Moreover, in vivo relevance was established in a murine endotoxin model, in which Wnt3a inhibition enhances the inflammatory responses by augmenting the systemic pro-inflammatory cytokine levels and neutrophil infiltration. CONCLUSIONS: TLR4 activation promotes Wnt3a-Dvl3 signaling, which acts as rheostats to restrain the intensity of inflammation through regulating GSK3ß-ß-catenin signaling and NF-κB activity. GENERAL SIGNIFICANCE: Wnt3a-Dvl3-ß-catenin signaling axis could be a potential interventional target for manipulating the direction and intensity of inflammatory responses.


Assuntos
Proteínas Desgrenhadas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Citocinas/metabolismo , Endotoxinas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Fosforilação/fisiologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Adv Exp Med Biol ; 1197: 165-178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31732941

RESUMO

Periodontitis is a multifactorial chronic inflammatory infectious disease that compromises the integrity of tooth-supporting tissues. The disease progression depends on the disruption of host-microbe homeostasis in the periodontal tissue. This disruption is marked by a shift in the composition of the polymicrobial oral community from a symbiotic to a dysbiotic, more complex community that is capable of evading killing while promoting inflammation. Neutrophils are the main phagocytic cell in the periodontal pocket, and the outcome of the interaction with the oral microbiota is an important determinant of oral health. Novel culture-independent techniques have facilitated the identification of new bacterial species at periodontal lesions and induced a reappraisal of the microbial etiology of periodontitis. In this chapter, we discuss how neutrophils interact with two emerging oral pathogens, Filifactor alocis and Peptoanaerobacter stomatis, and the different strategies deploy by these organisms to modulate neutrophil effector functions, with the goal to outline a new paradigm in our knowledge about neutrophil responses to putative periodontal pathogens and their contribution to disease progression.


Assuntos
Neutrófilos , Periodontite , Clostridiales/imunologia , Disbiose , Humanos , Microbiota/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Periodontite/imunologia , Periodontite/microbiologia , Periodonto/microbiologia
19.
Pathogens ; 8(2)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052371

RESUMO

Periodontitis is a highly prevalent infectious disease that affects ~ 50% of the adults in the USA alone. Two Gram-positive anaerobic oral bacteria, Filifactor alocis and Peptoanaerobacter stomatis, have emerged as important periodontal pathogens. Neutrophils are a major component of the innate host response in the gingival tissue, and the contribution of neutrophil-derived cytokines and chemokines plays a central role in disease progression. The pattern of cytokines and chemokines released by human neutrophils upon stimulation with newly appreciated periodontal bacteria compared to the keystone oral pathogen Porphyromonas gingivalis was investigated. Our results showed that both F. alocis and P. stomatis triggered TLR2/6 activation. F. alocis induced significant changes in gene expression of cytokines and chemokines in human neutrophils compared to unstimulated cells. However, except for IL-1ra, neutrophils released lower levels of cytokines and chemokines in response to F. alocis compared to P. stomatis. Furthermore, bacteria-free conditioned supernatant collected from neutrophils challenged with P. stomatis, but not from P. gingivalis or F. alocis, was chemotactic towards both neutrophils and monocytes. Elucidating stimuli-specific modulation of human neutrophil effector functions in the context of dysbiotic microbial community constituents provides valuable information for understanding the pathogenesis of periodontal diseases.

20.
Mol Oral Microbiol ; 34(2): 27-38, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30632295

RESUMO

Neutrophils are phagocytic innate immune cells essential for killing bacteria via activation of a wide variety of effector responses and generation of large amounts of reactive oxygen species (ROS). Majority of the ROS in neutrophils is generated by activation of the superoxide-generating enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Independent of their anti-microbial function, NADPH oxidase-derived ROS have emerged as key regulators of host immune responses and neutrophilic inflammation. Data from patients with inherited defects in the NADPH oxidase subunit alleles that ablate its enzyme function as well as mouse models demonstrate profound dysregulation of host inflammatory responses, neutrophil hyper-activation and tissue damage in response to microbial ligands or tissue trauma. A large body of literature now demonstrates how oxidants function as essential signaling molecules that are essential for the regulation of neutrophil responses during priming, degranulation, neutrophil extracellular trap formation, and apoptosis, independent of their role in microbial killing. In this review we summarize how NADPH oxidase-derived oxidants modulate neutrophil function in a cell intrinsic manner and regulate host inflammatory responses. In addition, we summarize studies that have elucidated possible roles of oxidants in neutrophilic responses within the oral mucosa and periodontal disease.


Assuntos
NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Apoptose , Bactérias/imunologia , Bactérias/patogenicidade , Armadilhas Extracelulares , Doença Granulomatosa Crônica/imunologia , Humanos , Imunidade Inata , Inflamação/imunologia , Camundongos , Mucosa Bucal/imunologia , NADPH Oxidase 2 , Estresse Oxidativo , Doenças Periodontais/imunologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Explosão Respiratória/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...